
Fig. 4. Results for 𝜏 from Planck SRoll2 data, using the standard 50% sky mask or a 60% mask
for comparison. Considered are the Gaussian NN, the retrained NN and the HL likelihood.
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Conclusions
• On Planck data, we obtain 𝜏𝑁𝑁 = 0.0579 ± 0.0082

(68% CL), compatible with current XCL results but

with a ∼ 30% larger uncertainty.1

• NNs effectively combine information from two

channels, reducing impact of noise and systematics

without need of explicit modeling.

• While this work does not improve 𝜎(𝜏), it is the first

robust NN-based inference on real CMB data.

• Promising tool for complementary analysis of near-

future CMB experiments, e.g., B-mode searches.
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Background
• The optical depth to reionization, 𝜏, is the least constrained

ΛCDM parameter. To date, its most precise value stems from

large-scale EE cross power spectra (XCL) from Planck’s high-

frequency instrument (HFI).

• Planck HFI maps contain hard-to-model non-Gaussian

systematic residuals. Robust XCL methods, using simulations to

build an empirical likelihood, yield 𝜏 = 0.0566−0.062
+0.053 (68% CL).2

• We present the first likelihood-free 𝜏 inference from polarized

PlanckHFI maps fully based on neural networks (NNs).

Results

Simulations

Method: CNNs
• Convolutional neural nets (CNNs) do

not need analytical modeling and can

be trained on multi-channel sims.

• We train, test, and validate NN

models on Gaussian or Planck SRoll23

sky sims (CMB, noise, systematics).

• Infer value of 𝜏 directly from Stokes Q

and U maps at ∼4° pixel resolution,

convolving first-neighbor pixels on

the sphere using the NNhealpix code.4
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Fig. 1. Schematic of the convolutional
dense neural net used in this work.

𝜏𝑁𝑁 prediction

Fig. 2. Predictions from 104 simulations with input τ = 0.06, of CMB with Gaussian noise
(left panels) or CMB with SRoll2 noise + systematics (right panels). CNN models are
trained on CMB + Gaussian noise on one (top) or two frequency channels (bottom).
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Fig. 3. Prediction bias and statistical error from sims as in Fig. 2, with different input τ
values. CNN models are trained on 1 or 2 channels of Gaussian noise (teal, blue) or
retrained on SRoll2 sims (orange). For comparison, we show results from the
Hamimeche-Lewis (HL) XCL likelihood (green).
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